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In this paper we set out to calculate the self-diffusivity of a Brownian particle in a 
concentrated suspension. The problem is treated by regarding the neighbours of a 
test particle as forming a ‘cage’. For short time t < t,, say, the particle is partially 
constrained by the cage and an equation is proposed to describe the coupled 
dynamics of particle and cage. The equation is shown to be asymptotically exact in 
some cases and acceptably accurate for other simple systems by comparing with 
Monte Carlo simulations. Por times t > t,, the particle diffuses sufficiently far to 
escape its original cage (and finds itself in a new one). A quantitative estimate for 
t ,  is proposed and verified for a system of rod-like particles by numerical simulation. 
By combining these two ingredients an estimate of the long-time (t  9 t,) self- 
diffusivity of a particle is made. For rod-like particles t ,  is the reptation time, and the 
result here is compared with the theory of Doi & Edwards (1978a,b), and with 
experiment. For a system of spheres comparison is made with the tracer light- 
scattering experiments of Kops-Werkhoven & Fijnaut (1982). In  both cases good 
agreement is found when the particle concentration is sufficiently high. 

1. Introduction 
We consider in this paper the self-diffusion of a Brownian particle in a neutrally 

buoyant suspension of identical particles having sufficiently high concentration for 
interaction between particles to be important. By self-diflusion we mean the random 
walk of a marked particle as it moves in a quiescent suspension under the influence 
of both the random Brownian impacts from solvent molecules and collisions with 
other suspended particles. (Note that at  non-zero concentration this differs from the 
down-gradient diffusion generated by a particle concentration gradient ; see e.g. the 
discussion in Rallison & Hinch 1986.) In  general the mean-square displacement of the 
marked particle (which starts a t  the origin, say) is not a linear function of time. 
Initially the growth is linear, but after the particle has diffused a distance 
comparable with its diameter there is a relative ‘vacuum’ of other particles behind 
it (i.e. closer to the origin), but an increased density of particle centres ahead (further 
from the origin), and this imbalance tends to hinder further progress by the test 
particle (see also Batchelor 1983). After many collisions with neighbours, however, 
the average test-particle motion is diffusive (though with a lower diffusivity than in 
an infinitely dilute system). 

Since the particles are immersed in a viscous fluid, each affects the motion of its 
neighbours hydrodynamically. In a dilute system even comparatively distant 
particles can hinder the self-diffusion of a test particle with a consequent (small) 
extra reduction in the diffusivity (see e.g. Rallison & Hinch 1986). In a concentrated 
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system, however, the largest hydrodynamic forces are of lubrication type and act to 
prevent overlap of particle pairs. In  the calculations presented in this paper, 
hydrodynamic interactions are ignored, but potential forces between parkicles which 
prohibit overlap are included. This provides a considerable theoretical simplification. 
Our expectation is that because the most important interaction effects are still 
included in the analysis, this will prove to be a good approximation for (sufficiently) 
concentrated suspensions. 

The bulk of theoretical work on suspension properties has been concerned with 
dilute systems in which the particles are assumed not to affect each other at  all, or 
in which only small groups (pairs, triples, etc.) of particles simultaneously interact. 
These theories can provide only the first few terms of a power series in the small 
volume concentration of particles 4. A notable exception is the work of Doi & 
Edwards (1978a, 6 )  concerning the rotational diffusion of rods in a semidilute 
concentration regime, for which the volume concentration is low but the distance 
between adjacent rods is small compared with their length. Doi & Edwards 
demonstrate that the rotational diffusivity of a test r9d is reduce$ substantially by 
its overlapping neighb?urs, in fact by a factor #-’ where # is an ‘effective 
concentration ’ of rods (# = nP, 1 being a rod length, and n the number density of rod 
centres). 

At the heart of Doi & Edwards’ calculation is the idea for a concentrated system 
of a ‘cage ’ of neighbours for a test particle which inhibit its diffusive motion. The 
same idea has been proposed in related contexts by de Gennes (1971), Pusey (1975) 
and others. The idea is intuitively appealing and suggests the possibility of analysing 
the diffusive motion in two stages: 

( a )  for short times t < t, a particle is confined within a cage, and its behaviour 
must be calculated by analysing the cooperative motion of the cage together with the 
particle itself; 

( b )  a t  time t, the particle escapes from the original cage having diffused a distance 
d, in the x-direction, say, and finds itself under a new set of partial constraints within 
which a new random walk can start again. Thus for times t 9 t ,  the test particle will 
have escaped from many cages, taken many independent random steps of size d,, and 
so its long-time motion will be diffusive in character, with diffusivity of order dE/t,. 
Indeed, if successive cages are uncorrelated with one another, this long-time 
x-diffusivity is d; /2 t c .  

For calculational purposes there are two difficulties with this picture of the 
diffusion process. First, the definition of the escape time t, is unclear. Equivalently, 
so far as the determination of the long-time diffusivity is concerned, the extent of the 
correlation between successive cages needs to be specified. A second and more subtle 
difficulty is that in considering the average motion of a marked particle it is not clear 
which other particles constitute the cage. In particular in a dilute suspension the 
identities of the current neighbours of a test particle are continually changing. In a 
sufficiently concentrated suspension, however, the neighbours of a test particle are 
locked together for a time long compared with that taken for an isolated particle to 
diffuse across an interparticle separation, and in consequence the particles forming 
the cage must move with the marked particle and (most ofj  their identities are fixed 
for 0 < t < t,. 

Two concentrated suspensions are discussed in detail in this paper, and we may 
identify the physical meanings of d, and t ,  a t  the outset. Consider first a suspension 
of Brownian spheres of radius a (35). If the suspension is dilute, the expected times 
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spent by two particles in collision (say within a distance of order a of each other) is 
of order a2/Do where Do is the diffusivity of a sphere in isolation. In that case the 
‘cage ’ terminology is unhelpful since only small groups of spheres simultaneously 
collide and most of the ‘bars’ of the cage are missing. On the other hand, at  
concentrations comparable with that required for random close-packing of the 
spheres, the time for which a pair of particles are in close proximity is long compared 
with a2/D,  (indeed infinitely long a t  that concentration for which the self-diffusivity 
vanishes) and all directions of motion are blocked to a test sphere. A useful (albeit 
still imprecise) definition of t ,  which in principle embraces both the dilute and 
concentrated cases is the expected time for which a particle remains within an O(a) 
distance of a neighbour. By definition, for this system the cage size d, is of order a. 
It is apparent that the self-diffusivity cannot become established (in a light- 
scattering experiment, say) for correlation times shorter than t,. It should be noted 
that t ,  here is not the time taken for a test particle to diffuse freely across a nearest- 
neighbour distance (as suggested by Pusey 1975 and Batchelor 1983) ; as shown in 
Rallison & Hinch (1986) this is not the case for dilute systems, and in $ 5  we show that 
it is also incorrect for concentrated suspensions of spheres. 

The second system of interest is a semidilute suspension of slender Brownian rods 
of length 1 (94). Here the longitudinal motion of a test rod is comparatively free, but 
lateral motion is strongly impeded. In this case the collision time for a pair of rods 
t ,  is of order Z2/Do (i.e. the time taken for a rod to diffuse freely along its length) and 
does not depend strongly on the concentration of rods. At issue, however, is how far 
the rod can diffuse laterally in time t,, i.e. the cage size d,. It is tempting to identify 
d ,  as the geometric lengthscale given by the nearest-neighbour distance between 
particles (as do Doi & Edwards 1978) for semidilute rods. This amounts, in effect, to 
an assumption that the neighbouring particles form an impenetrable barrier to 
progress by the test particle and cannot be pushed out of the way. We critically re- 
examine this in $ 4  and show that in general it is false for systems of rod-like 
particles. 

To determine the long-time self-diffusivity then, we must first solve a difficult 
many-body problem appropriate for times t < t ,  during which a particle is interacting 
with the cage. This forms the subject of $3. On the basis of this ‘constrained’ solution 
it is possible to deduce when the particle first expects to evade its immediate 
neighbours so that t,, d, and hence the long-time diffusivity D may be inferred. The 
theory is applied to  artificial and real systems of rods in $4, and to concentrated 
suspensions of spheres in 95. In some cases we are able to compare results with 
experiment, elsewhere only numerical data from Monte Carlo (or ‘Brownian 
dynamics ’) simulations are available. These simulations have been the source of 
some confusion and criticism (Fixman 1985a, b )  and in consequence we start in $2 
with a discussion of the proper simulation of interacting Brownian particles. The 
main conclusions of the paper are summarized in $6. 

2. Monte Carlo simulations of interacting Brownian particles 
The motion of an individual particle in a concentrated quiescent suspension is 

influenced by three forces. First, the random Brownian impact of solent molecules 
(with successive impacts occurring on a very short timescale) ; secondly, the viscous 
resistance imposed by the solvent; and thirdly the result of collisions with other 
suspended particles. 
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The random motion of a particle is often modelled by a Langevin equation so if x 
is its position a t  time t ,  m its mass and 6 the viscous resistance exerted by solvent 
molecules (neglecting hydrodynamic interactions) 

mx + cx + F = f(  t ) , ( 1 )  

where f is the rapidly fluctuating Brownian force, and F ( x )  the slowly varying net 
force exerted by neighbouring particles (see e.g. Hinch 1975). Now the correlation 
time for the fluctuations is so short compared with all other timescales in the problem 
that we may write 

( f ( t ) f ( t ’ ) )  = B J ( t - t ’ )  

where (.  ) denotes an ensemble average, and by the fluctuation-dissipation theorem 
the magnitude of the fluctuation is given as 

B = 2lcTy. 

It is well known that (1) gives rise to a diffusive process at long times. For the 
purpose of a Monte Carlo simulation on a timescale long compared with the inertial 
relaxation time m / [ ,  equation (1) may be replaced by the time-stepping procedure 

(2) 
FAt 

x ( t + A t )  = x ( t ) - - + + ( t ) ,  
6 

where h( t )  is a random variable with zero mean and variance given as 

(h’) = 2 D o A t .  

The diffusivity Do is given by the Stokes-Einstein relation as W/6. The advantage 
of ( 2 )  is that a very much longer time-step can be used than is required for the 
Langevin equation ( l ) ,  since the short-lived inertial features do not have to be 
resolved. 

For ‘hard’ particles F is very sharply peaked, but varies, we assume, on a 
lengthscale long compared with a single Brownian displacement. Equation ( 2 )  
therefore still represents a valid computational procedure which will model the hard 
force provided the step size At is sufficiently small for the degree of interpenetration 
of particles determined by F to be small (in fact of order ( [At ) : )  compared with their 
size. It means however that the probability density for x is poorly resolved in regions 
of order ( [At ) :  from the particle surface. Other procedures that deal with the 
interactions may be equally accurate but perhaps easier to generate computationally, 
e.g. particle overlap may be prohibited by assuming that particles provide a fixed 
reflective surface from which a test particle ‘bounces’ elastically (Doi, Yamamoto & 
Kano 1984) ; or a wholly unreflective surface from which there is no bounce a t  all ; 
alternatively the potential may be ‘softened’ slightly so that a small overlap is 
permitted, but the particles are subsequently pushed apart (present work). Yet a 
further possibility is that all random steps which infringe the no-overlap requirement 
are ignored completely. 

Fixman (1985a, b)  has criticized the simulation of Doi et al. (1984), and by 
implication also the simulations in this paper, on the grounds that too large a time- 
step was used in comparison with his own work. There is no doubt that for a full 
phase-space analysis a small step would be needed, but, as noted above, provided ( a )  
no particles pass through one another in a single step, and (b )  many random steps are 
taken during the time evolution, the diffusivity should be accurately determined. A 
partial check on the validity of the results can be made by varying A t :  in the 
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Brownian dynamics simulations described later in this paper no statistically 
significant change in the results was detectable on halving At. We should also 
mention in this context the assumption in the theoretical analysis of Harris (1965) 
that particles collide ‘elastically ’. The term is potentially misleading in that it 
suggests an inertial ‘ billiard-ball ’ collision, whereas on the diffusion timescale inertia 
is insignificant. We have noted above however that all methods of dealing with the 
interactive force term F in (2) are equivalent in the limit At --f 0, and thus the system 
described by Harris does model the self-diffusion process. 

On the other hand Frankel & McGuire (1983), whose work is sometimes quoted in 
this context, make the assumption that particles move freely between collisions in the 
same way as in the kinetic theory of gases, and thus - although their conclusions 
support those here in certain respects - the underlying dynamics are fundamentally 
different and comparisons must be treated with suspicion. 

3. Diffusion in strongly constrained systems 
This section examines the diffusion of a particle for times t < t ,  during which it is 

unable to escape the constraints provided by its neighbours. The aim is to find its 
mean-square displacement as a function of time. The simplest system with inviolable 
constraints involves a one-dimensional random walk and we consider two versions of 
such a system below. 

3.1. Diffusion of particles around a ring 
Consider a set of N impenetrable particles which are constrained to move on a ring 
as shown in figure 1 and which interact only by collision. The linear distance 
traversed round the ring by a single test particle from its initial position is denoted 
by x,. (If the particle performs several complete circuits then xo will exceed the total 
circumference L of the ring.) Suppose further that the particles are identical and 
Brownian, that each in isolation would have diffusivity Do, that a t  zero time the 
particles are distributed uniformly around the ring, and for the sake of simplicity 
that hydrodynamic interactions between particles may be neglected. Then for times 
sufficiently short that no interactions have taken place, the distribution of x, is 
Gaussian and (xi) = 2 0 , t .  The corresponding expression for general times t is 
complicated (see below), but for long times a simple result may be derived. 

As t + 00 we expect that (xi) + 00 and hence, since the particles are impenetrable, 
that the r.m.5. displacement of every particle is asymptotically the same. It follows 
that the statistics for x,, are the same as those for every xi, and so asymptotically also 
for the centre of number 

N-1 .. 

Now in the absence of collisions, 6 is the sum of N independent random variables each 
of which is Gaussian with mean zero and variance 20,t. It follows that c would itself 
be Gaussian with zero mean and variance ( t2)  = 2 0 , t I N .  At first sight it appears 
that the presence of collisions will affect this conclusion, but if particle interactions 
are such that when particles i and i+l collide their centre of mass motion is not 
changed, then 6 is unaffected by collisions, and the result still applies, independently 
of the details of the interactive force mechanism. Then, as t --f co 
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FIGURE 1. Definition sketch for the diffusion of LV impenetrable particles around a ring with 
circumference L. 

and hence for long times x,, is governed by a diffusion process with effective 
diffusivity D = D , / N .  

To complete the analysis of this problem it remains to determine the rapidity of 
the change from the zero-time diffusivity D,, to the asymptotic value DOIN.  This is 
explained in the next section. 

3.2. Difiusion of particles along an inJinite line 
We consider next the diffusion of impenetrable particles, each having size a ,  along an 
infinite line. Suppose that at  time t = 0 the particles are distributed by a Poisson 
process uniformly along the line with number density n and that the particle 
concentration is small in the sense that nu 4 1. Again let x,, bc the deviation of a test 
particle from its original position. We seek to determine the distribution of x,, as 
t i c o .  

This problem has been considered from a probabilistic point of view by Harris 
(1965). The crucial observation that he makes is that whenever two particles collide 
each particle may be regarded as taking on from that point onward the random walk 
of the other; i.e. if the particles were unlabelled, any time evolution of their 
configuration would appear identical with that of the same particles if the particles 
were transparent to one another (see figure 2 ) .  It follows that the statistics of x,, at  
some time t can be obtained by counting the number of other particle trajectories 
that x,, crosses, which may itself be determined via the maximum statistic for a 
Brownian random walk (see e.g. Karlin & Taylor 1975). 

The conclusion from Harris’ (1965) calculation is that as t + cc the distribution of 
xo is Gaussian with mean zero and mean-square displacement 

It follows that for long times the particle moves infinitely far from its starting 
position, but that  its motion is never purely diffusive in character since 
d(xi)/dt $: constant. Further for large times the net distance traversed is much 
smaller than for an unimpeded particle. 
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FIGURE 2.  Sketch of trajectories for diffusing impenetrable particles moving along an infinite line. 
_ _ _  , trajectories without collisions ; -, actual trajectory of test particle. 

3.3. A physical interpretation and hypothesis 

A physical interpretation which unifies the results (3) and (4) may be made as follows. 
If we suppose that a t  time t a certain number N ( t )  of particles have interacted 
directly or indirectly with the labelled particle (x,) then the result (3) suggests 
writing 

and comparison with (4) gives 

N ( t )  N ( 2 x ) h ( 2 D 0  t);  as t -+ 00. 

Now ( 2 0 ,  t): is the r.m.s. distance that an unimpeded particle would have travelled, 
and n(2D0t);  is the mean number of particles in that region. This estimate for N ( t )  is 
intuitively in accord with Harris’ analysis above in suggesting that the particles that 
form instantaneously a diffusing group around a test particle are those that must 
necessarily move with it and that lie in a zone whose size increases with the 
unimpeded test particle displacement. (More precisely, in fact, with a maximum 
statistic for the unimpeded random walk. Unfortunately, the maximum, though a 
better estimate of the size of influence, is much harder to calculate, and at the level 
of conjectural approximation here it is much easier to use the r.m.s. which at least 
scales with the maximum.) 

So far we have done no more than to rewrite the results above, but the new 
interpretation suggests a technique for analysing more complex systems of 
interacting identical Brownian particles. For suppose that when a test particle is 
displaced through a distance x,, an expected number N ( x , )  of particles (including 
the test particle itself) are themselves caused to be displaced. Then we conjecture 
that in the diffusing system 

2 Do dt’ 
= 1 “(4x0, t);] ’ 

Equivalently, if an effective diffusivity D(t )  at time t is defined so that 

( z : ) ( t )  = 2Dt, 
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then 

For example for Harris' (1965) system, N(0) = 1 (the test particle) and 

N ( X 0 )  = 1 +nxo, 

llog(1+n(47cDot);) 
1 

n(47cD0 t ) ~  
so that 

n (7) 

By construction this result is asymptotically correct a t  times t --f 0 and t --f co for 

then t h o ,  

For intermediate times no analytic result is available, and we compare ( 7 )  with a 
numerical simulation in $3.4.  Agreement is good. I n  particular, the timescale on 
which the diffusivity changes from one asymptote to the other is correctly predicted 
as 1/Don2 - which might have been anticipated on dimensional grounds. 

It should be emphasized that we are unable to supply any formal proof of (5)  
except for one-dimensional systems and then only asymptotically for short and long 
times. Our claim is that i t  correctly represents the physics of the problem, and that 
for intermediate times it is an over-simplified approximation which nevertheless 
produces good agreement with numerical simulations. 

For two- and three-dimensional systems no exact results like Harris's are available, 
essentially because the basic idea that colliding particles are identical no longer 
applies, but in $53.4 and 4.2 we resort to numerical experiments to test the 
correctness of (5) .  I n  every case it proves to be a good approximation over the whole 
range of t with errors apparently decreasing as t --f co. 

The usefulness of (5) for complex systems is that  i t  separates the two stochastic 
elements in the calculation : the statistical geometry enters the calculation only 
through M ;  and once JV is known the Brownian motion within the geometry may 
be determined. 

3.4. Numerical simulation for the diflusion of particles around a ring 

Returning to  the system of $3.1 shown in figure 1 we have 

1 + T X O  xo < L ,  
Jv-(xo) = 1 N - l  

" 
and hence writing 7 = Dot/L2 as a non-dimensional time (6) predicts 

There are thus two important timescales : the time L2/Do N 2  a t  which a test particle 
first feels the influence of its neighbours, and the longer time L2/Do when it  sees the 
finiteness of the ring, and hence of the total number of its neighbours. 
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Numerical solution 
A numerical solution of this problem (similar in character to one proposed by 

Pusey 1974) was generated as follows. A number N of particles were placed a t  
random on a line of length L = 50. The ends of the line were identified by use of 
periodic boundaries. The particles were considered to  have unit width ( a  = 1) so that 
any two particles closer than 1 unit overlapped. A repulsive force (of the form 
a / (a+d)  with d the distance of closest approach) was then switched on to push the 
particles apart. 

At each time step the particles were each subject to a random displacement (of 
ki) to represent the Brownian impulse in accord with (2). It would be possible to 
vary randomly the magnitude as well as the direction of h( t ) ,  but this is unnecessary 
for producing good random-walk statistics. Furthermore since for a given value of 
( h 2 )  the random function with smallest maximum has constant magnitude this 
choice permits the largest value of At consistent with the requirement that no 
particle can ‘jump over ’ another in a single time-step. Pairs of particles that were 
then found to overlap were pushed apart again by the repulsive force mechanism. 
The first few time steps were required to fully randomize the particle positions 
(bearing in mind that the method described for generating the initial configuration 
favours close pairs of particles). After this initial shaking, the positions of the 
particles were monitored as a function of time and their r.m.s. displacement 

was calculated. By averaging over a (large) number of time evolutions, a numerical 
prediction for ( x i )  ( t )  was obtained. 

The results for values of N = 6, 10, 20 were all qualitatively similar, and since the 
theory requires nu << 1, we make comparisons with theory for the case N = 6, i.e. 
nu x 0.1. In  figure 3 is shown the average of 20 simulations, together with the result 
given by (8). The discrepancy between the two is no more than 7 % over the full range 
of t ,  and this is less than the statistical error in the numerical result. 

The theory is surely not exactly correct : the predicted weak lack of smoothness in 
the curve when 7 = 1/4n seems an unsatisfactory feature. Nevertheless the agreement 
is gratifying and lends confidence to the use of (5) for all t. Perhaps the most 
surprising feature is that the asymptotic value D = D,/N is attained when T x 0.1, 
i.e. when an unimpeded particle would have diffused only one third of the way 
around the ring. This is presumably because the more extensive random walks of the 
ensemble, which are less probable when particles interact, are curtailed by 
interactions sooner than less extensive walks. 

4. Diffusion in suspensions of rods 
The principal aim of this section is a critical reappraisal of the Doi-Edwards 

(1978a, b ,  hereinafter referred to as DE) theory for the rotational diffusivity D’ of a 
slender rod in a semidilute suspension. The semidilute regime is defined (Batchelor 
1971) by the requirements that  the volume concentration of rods is small, but that 
the rods overlap significantly. Thus if each rod has Jength 1, and the number density 
o,f rod centres is n, the latter requirement gives 4 = n13 B 1, and the former that 
q5 + r2 ,  where r is a large aspect ratio for the rod. In  fact, as pointed out by DE, a 
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10-4 10-3 10-2 10-1 1 

FIGURE 3. Diffusion of N = 6 particles round a ring: effective ditfusivitg plotted as a function of 
dimensionless time T = D,t /L2.  -, theory, equation (8) ; 0, results from an average of 20 Monte 
Carlo simulations. 

7 

stronger constraint is required in order that a nematic transition not occur in which 
the rods are preferentially aligned rat4er than having random orientations. This 
condition can be written (Flory 1956) 4 4 r .  Since in our analysis r is regarded as 
arbitrarily large, the distinction is not important here. 

There are two physical ingredients to the DE theory. First, because the rods are 
so strongly entangled, significant rotation of a test rod with a fixed centre is 
impossible, and so rotational diffusion can occur only if the rod slides along its length 
within the instantaneous cage, rotating slightly as it does so. This snake-likc motion 
has been christened reptation. In  consequence the escape time from the cage t, (here 
called the reptation time) is given by the time taken for a rod to diffuse along its 
length, so that on dimensional grounds t, is of order (Of;)-' where Df; is the rotational 
diffusivity of an isolated rod. 

Second, the DE theory supposes that without reptating a test rod is unable to 
rotate further than the constraint provided by its nearest neighbours, with the 
implication that further rotation of a test rod will generate a 'log-jam' wherc no 
further rotation is possible. On this basis, in the time available before a test rod 
reptates away from its cons$raint, the maximum angle that it can turn through (the 
cage size d,) is of order l/$ and 

Dp B 

where /3 is an unknown constant of order unity. 
In  spite of the simplicity of the DE proposal, the log-jam mechanism is not itsdf 

attractive for this fluid-like system for the following reasons. In  thc absence of 
Brownian motion, if a steady external mechanical couple is applied by some means 
to a single suspended rod, then in circumstances where a log-jam occurs the 
associated stress must be transmitted to the solid boundaries of the container of t!w 
suspension. The stationary solvent cannot itself sustain the non-hydrostatic stress, 
and since the rods are small (arbitrarily so in the limit), an infinite cluster of touching 
rods extending to the boundary would have to form when the test rod rotates 
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through a small finite angle. In  fact however in this concentration regime (below the 
nematic transition) each rod has non-zero room in which to  manoeuvre so (as shown 
in $4.3) only a finite cluster can arise. Furthermore such a tight constraining 
mechanism would appear to prevent flow of the suspension altogether (as in a 
suspension of closely packed spheres which does display solid-like rheology). 

We therefore discount the log-jam and raise the possibility that cooperative 
diffusive motioqs of a test rod and its surrounding cage permit a rotation of larger 
order than l/$ before the rod reptates. Fixman (1985a) has also made this 
suggestion, noting that if a test rod makes a small rotation this initiates a local 
perturbation to  the system giving rise to a quasi-elastic free energy stored within the 
cage, and that this free energy can then spread through the neighbouring rods. 
Fixman goes on to  conclude on the basis of nuqerical simulatjon (discussed in 54.3) 
that the effective angular rotation is only O($-i) for 24 < $ < 146, and provides 
(Fixman 1985b) a model exhibiting this behaviour. 

The substance of our conclusion (unlike Fixman’s) is that DE result above is 
correct, though the constant p has a value (about 400) in excess of unity, and (like 
Fixman) that no log-jam occurs. Before embarking upon an analysis of this complex 
system we start by considering simpler quasi-one- or two-dimensional rod 
suspensions where similar techniques might be expected to be appropriate. These 
systems also provide means of checking the correctness of ( 5 ) ,  and finding a 
quantitative estimate for t,. 

4.1. A one-dimensional rod suspension 

Consider first the system of $3.3 in which the impenetrable point particles diffusing 
along an infinite line (the x-axis) are imagined to be the projections of long rods 
perpendicular to the line. The rods are now imagined to have an unhindered 
diffusivity Do along their length 1. The rods are supposed parallel to the y-axis (see 
figure 4). Then a rod spends the time of order t, = l2/D0 in ‘escaping’ from the 
line. 

For times t < t ,  the finiteness of the rods is not apparent so (5) should apply and 
if xo is the x-displacement of a test rod from its initial position then 

2 Do dt’ 
d, = (x;)i(t,) = 

where n is the number density of rods along the line. Thus in this artificial system the 
effective diffusivity in the x-direction is 

where 8 = nl is the effective line concentration of rods. I n  consequence, if 8 + 1, 
D Do. It is interesting to note however that the nearest-neighbour distance in this 
system is of order lln, but that d ,  + l /n .  Thus the cooperation of neighbours 
generates a much larger cage size than the interparticle separation. The reptation 
phenomenon occurs, but no ‘ log-jam ’ explanation is required or appropriate. 

This model system is unsatisfactory as it stands in that only the dynamics of rods 
crossing a specific line have been considered. I n  the next section we analyse a 
reptating system in which every particle is treated equally. 



482 J .  M .  Rallison 

FIGURE 4. Definition sketch for a ‘one-dimensional ’ rod suspension. 

4.2. Diffusion in a two-dimensional system of rods 

We consider next a two-dimensional suspension of Brownian rods of length 1 and 
width a confined to the (x, y)-plane, that are externally constrained by some means 
so that each always lies parallel to the y-axis. Let the area density of rod centres be 
n, and suppose that the rods are dilute but strongly overlapping so that a 4 n-i 4 1 
(the semidilute approximation). Let Do be the undisturbed x-diffusivity of an 
isolated rod. The motion of a rod along its length is unaffected by interactions and 
therefore the y-diffusivity has the value a2D, where a is a constant independent of 
n. On hydrodynamic grounds the ‘best ’ value for a is d2, but more importantly for 
the model calculation here, variation of a permits variation of the reptation time 
t ,  and hence can provide an independent check on the appropriateness of the 
estimate suggested in $ 1  as the time at which the test rod first expects to evade its 
neighbours. Our aim is to analyse the x-diffusion of the rods. We anticipate that via 
the reptation mechanism this motion will ultimately be diffusive in character, and we 
seek to d$ermine the dependence of the diffusivity on the effective area concentration 
of rods q5 = n12. 

Approximate result 

Suppose first that a = 0 so that no reptation occurs. Then for use of ( 5 )  we need 
to evaluate the expected number N ( x )  of rods required to move when a test rod 
translates through x. At first sight it might be thought that N ( x )  is simply the 
expected number of rod centres to be found in the area xl swept out by the test rod. 
This conclusion is incorrect, however, since the test rod sweeps up other rods that 
overlap it,  and increases its own effective length with x .  In  fact a trapezoidal, not 
rectangular, area of rods is involved (sketched in figure 5) .  If Y ( x )  is the effective 
length of a rod after displacement through a distance x, then when the test rod moves 
a further distance dx a new rod will be struck if its centre lies in an area (9 + 1) dx and 
so 

-- - n(Y+l) ,  J ( 0 )  = 1. 
d N  
dx 

Further, the corresponding increase in Y occurs (however large 2’) near the rod’s 
instantaneous ends and may be estimated as 

d 9  = Probability (new rod is struck) x (Expected overlap) 
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FIGURE 5. Definition sketch for a ‘two-dimensional ’ rod suspension. The trapezoidal region marked 
is the area within which a rod centre must fall if it  is to be struck by the test rod. 

and, since all overlaps between 0 and 1 are equally probable and both ends must be 
accounted for 

d 2  = 2ndx ydy = nPdx. l 
Now 2 ( 0 )  = 1, 

and thus 2 ( x )  = 1 + nPx, 

and so 

Equation (6) then gives for the effective diffusivity 

2-42+((4m); 
Do 2717 2 + 4 2  + (4717); 

log (1 + 2(4x7);+ 2x7)  - 4 2  log 

+ 4 2  log ___ 2 - 4 7  (11)  
2 + 4 2  ’ 

where r = qPDot/12 is a dimensionless time. Asymptotic limits are 

We note that (xi) + 00 as t + co though only logarithmically. Thus again a test rod 
can move arbitrarily far, and no phenomenon analogous to the log-jam occurs. A 
graph of D(t)  is plotted in figure 6. 

Numerical realization 
The numerical solution for the problem of particles on a ring discussed in 33.4 is 

easily adapted for this more complicated system. A set of N rods is confined to a 
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7 

FIGURE 6. Diffusivities for a non-reptating (a =*O) two-dimensional rod suspension. -, equation 
(1 1) ; 0, numerical simulation of 30 rods with 4 = 0.1 ; ---, level a t  which numerical results cease 
to apply. 

rectangular region with periodic boundaries in both the x- and y-directions. At each 
time-step random increments h(t)  to the 2- and y-positions of each rod centre of 
relative strengths 1 and a are applied in accordance with ( 2 ) .  Two rods are then 
considered to overlap if their x-positions lie within a distance a of one another and 
their y-coordinates differ by 1 or less. I n  that case a soft potential (described in $3.1) 
pushes them apart again. I n  the simulations the length of the rods was taken as unity 
and N, = 30 rods were confined to a periodic box of size 50 in x and 6 in y. It follows 
that g5 = 0.1. 

For a = 0 no y-motion takes place and so the formula (11) above should be 
appropriate. In  figure 6 we show the comparison of the numerical and approximate 
solutions. The two results agree to within 8% (which is less than the expected 
statistical error in the simulation) over the whole range of 7 < 8. For larger values of 
7 the diffusivity D (< 0.05DJ is so small that almost every rod in the simulation has 
become involved and the estimate of N ( x )  for an unbounded system has ceased to 
be valid. Indeed a t  such large times the effective rod length 9 is approximately 6 and 
thus the system should look like the ring of $3.1 with a diffusivity &Do (as marked 
in figure 6). Thus for the non-reptating system with a = 0 the result (11) for D(t)  
seems an acceptable approximation. 

Reptation 
For (small) non-zero a, rods are now able to  escape from their cages. In line with 

the suggestion of 5 1 we suppose that t ,  is the time a t  which a test rod expects to have 
moved sufficiently far to  escape its nearest neighbour. I n  this system both a test rod 
and its neighbour diffuse independently in y with diffusivity a2D,, and hence after 
time t their centres have moved apart by an expected distance y given as 

(y2) = 42D, t. 
Now a t  the initial instant all centre separations y between 0 and 1 are equally 
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probable so that the probability that the initial separation lies in the range y, y+dy 
is dy/2, and thus the reptation time t ,  is 

The corresponding value of r is then d2/12a2 and the diffusivity is given by (11) 

1 
+ 2/2 log- 

2+2/2 
2-2/2 I 

We show in table 1 the results for values of d / a  from 1 to 8, where they are compared 
with those from a numerical simulation. 

Each simulation with non-zero a showed an approach to an asymptotic value of 
D as t+ co, and the values are given in table 1. The figures are subject to statistical 
errors of about 10 YO because relatively few simulation? could be run in a reasonable 
amount of computer time. For even larger values of $/a  the asymptotic value was 
reached a t  very large values o f t  and the finiteness of the number of rods in the 
simulation became important. We note that the quantitative estimate (13) for the 
reptation time produces" extraordinarily good agreement between theory and 
numerical experiment as $/a increases. In view of the statistical errors, the apparent 
closeness of the agreement must be regarded as fortuitous, but it is again when many 
rods are simultaneously involved (i.e. the concentration is high) that agreement is 
best. 

I t A i s  also" noteworthy that the results indicate the cage size d, scaling as 
(log $/a)ia/$, whereas the nearest-neighbour separation would give d, - a/$.  Thus 
the cooperation by the cage increases d, (and hence the diffusivity), albeit by only a 
logarithmic factor for this problem. 

The striking conclusions from this simulation then are ( a )  that (5) provides a good 
approximation for the behaviour of the rod within the cage, and ( b )  that the naYve 
estimate for t, obtained from nearest-neighbour interactions is surprisingly good. 

4.3. Reptation in a three-dimensional system of rods 

We turn finally to the physically realistic case of a three-dimensional system of 
semidilute rods and endeavour to determine thei; effective rotational diffusivity D' 
in $erms of the effective volume concentration $ = nZ3( 9 1). DE have pointed out 
that D' must also depend in general on the degree of orientation of the rods (as 
described by an orientation distribution f@), where p is a unit vector along a test 
rod). We shall also determine the functional dependence on f,  which proves to be very 
weak. 

We suppose that the short-time rotational diffusivity of a rod is Di. It may then 
be shown by slender-body theory for Stokes flows, together with the Stokes-Einstein 
relation, that for diffusion along the rod D! = +DL12, and for diffusion perpendiculr 
to it D,I = &DiZ2 (see e.g. Batchelor 1970). 

The reptation time for this system is given in $4.2 as the time a t  which a test rod 
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DID, D/Do 
d / a  (equation (13)) (Numerical simulation) 7, 

1 0.41 0.52k0.05 60 
2 0.25 0.24+0.02 300 
4 0.12 0.13 + _ O . O l  800 
8 0.055 0.055 f0.005 2000 

TABLE 1. Calculated long-time diffusivities for a two-dimensional suspension of rods. 7, is an 
approximate time a t  which the asymptote for D is reached. 

first escapes the constraint of its nearest neighbour. Now the nearest neighbour in 
this context is the rod that impedes the angular rotation of the test rod most severely 
and is therefore more likely to be close to the end of the test rod than to  its centre. 
In order to escape this first constraint a rod must diffuse a distance of order 1 along 
its length, and this takes an expected time y(D;)-l where y is a constant of order 
unity. We show by detailed analysis in Appendix A that y = i. In  addition, the 
possibility exists that the constraint may itself disappear because the constraining 
rod reptates out of the way. This takes an expected time 1/40',. The expected time 
a t  which the former of these events occurs is of course shorter than both, and is 
approximately 1 / 12 D', . 

We have thus estimated t, and hence from (6) 

(14) 
D' dt' 

and it remains finally to determine N(#; f ). 

Determination of N 
Consider first the isotropic orientation distribution with f = const = 1/47~. Exact 

evaluation of N is a difficult problem in combinatorial graph theory, but some 
progress may be made by order-of-magnitude estimation. Suppose that a test rod 
with fixed centre, and at fixed azimuth, rotates through an angle 6. Then it sweeps 
out an area a812. A second rod is therefore struck directly by the first if it intersects 
this area. Now the expected number of rods which intersect pn area A is $lA, and 
hence the expected number of rods struck by a test rod is ;$6. 

The rods so far accounted for are, of course, just the 'first generation'. Each 
of these may be expyted to hit others. A crude over-estimate for N would be that 
for each step of 8/$ in 8 the number of rods involved doubles, and hence that 
N ( 8 )  = 2@4. This is plainly an overstatement when #$ is large since i t  counts several 
times over some rods which are reached by different routes. Furthermore, because 
successive generations of rods are inclined to one another, the area each must swcep 
out decreases for each successive generation. A better estimate for N when 6q5 is 
large may be obtained as follows. 

Initially each rod has enough room to turn through an angle of about 8/d before 
it hits another. Thu; if the test rod rotates through an angle of order unity a series 
of chains of about 8$/8 links radiating from the test rod must also be caused to move. 
Now each link in the chain is randomly aligned to the prevjous one, and hence the 
disturbance of the suspension spreads to a radius of order (8$)6Z from the test rod. An 
upper bound for N (which seems likely to be attained in an order-of-magnitude 
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sense) is then given by the number of rods in a sphere of this radius, which scales as 
&$ as 8 + co. It follows from (5)  that as t + 00 

and hence that the first rod can attain an arbitrary orientation (6’ - 1) a t  a (large but) 
finite time. 

In  summary, we have that A’” is a monotone increasing function with 

Now (14) gives 

and the contribution to the integral from $ = O(4) is of order 4-k (and thus 
negligible) as g5 + 00. It follows that asymptotically 

_-  D‘ p Dh - -+O(&%), 4 2  * 

where (using the fact that XI(@)+ 00 rapidly as $+ GO) we may put 

The constant /3 here is formally of order unity ~s d +  a. 
This is the asymptotic dependence of D‘ on $ predicted by DE on the basis that 

a test rod will rotate only as far as its nearest neighbour. The theory above shows 
that given sufficient time a test rod can diffute even further, but that in the available 
reptation time only an angle of order l/$ is achived. Furthermore in order to 
determin: the value of the numerical constant p it suffices to evaluate N for 8 of 
order l/$, i.e. only the first few generations of interaction of the rpds. 

In order that  the $-$ term be negligible in comparison with the q5-2 term retained 
it is necessary that $4 % 1. Since d/8 appears a more appropriate estimate of the 
volume concentration it is likely that $ itself needs to be very large ( 9 64 say) before 
the reptation mechanism becomes important. It is ”notable that the numerical 
simulation of Doi et aE. (1984) similarly requires that g5 exceed about 100 before the 
d-2 behaviour is seep, and suggests that  the conclusion of Fixmann(1985a) that D’ 
is proportional to q5-l based on numerical simylation with 20 < q5 < 150 may not 
truly represent the asymptotic dependence as $ +- GO (see also figure 8). 

Dependence on the orientation distribution f 
The question arises as to how these estimates are affected iff is non-uniform. As a 
simple scalar measure of the anisotropy let 

h = 8(3@.ex)2-1) = - J (3@*ed2-1)f@)d2p, (15) 
2 orientations 

where e, is a unit vector in the x-direction. h = 0 when f = and the distribution 
is isotropic, and h = 1 when all the rods are aligned. Then the expected number of 
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rods which intersect an area A now depends upon the direction of the normal to A 
and is of order nlA(l-IA1). Hence the number of ‘first generation’ rods struck by 
a test rod is of order 6d( l -  IAl). Thus only if th,e rods are sufficiently aligned that 
l - J h ]  << 1 is the asymptotic dependence on 4 of the estimate above affected. 
Specifically provide$ that the mean angle of deviation of a test rod from full 
aiignment exceeds 4-l then 

For systems that are evenly more strongly aligned, the theory above breaks down, 
and presumably the diffusivity of each rod (for such time as f remains sharply 
peaked) is aEproximately Di. 

We turn finally to a numerical evaluation of P[f]. 

Determination of MI($) 
The dominant contribution to p comes from the first few generations of interacting 
rods. In  particular, after three generations the integrand in (16) has fallen to about 
i th  of its largest value. In consequence a fair approximation may be obtained by 
examining the first few generations with some care, and using a cruder approximatiop 
for later generations. Suppose then that the test rod rotates through an angle $I$. 
Define generation zero as the test rod, and generations r = 1 , 2 . .  . as the set of rods 
struck by generation r - 1 ; let v,($) be the expected number of rods in generation r .  
Suppose that the test rod advances from 6 to i3 + di3 and that each rod of generation 
r consequently sweeps out an area Z2A, d6. Then write the mean number of rods of 
generation r +  1 that strike unit area swept out by generation r as nlM,. It follows 
that 

Noting that vo(+) = 1 and that v,(O) = 0, r > 0, the V ,  can be determined iteratively 
when A ,  and M ,  are known. We show in Appendix A that approximate values for 
A ,  and M ,  are 

M ,  = M ,  A ,  = i(O.67K)‘ ( r  ‘l), 

in which the constants M and K are given by (A 2) and (A 3) as 

and 

and E is a complete elliptic integral. It follow that 

and the sum is easily computed from the first few terms. 
We show in figure 7 the variation of JI’ for modest values of $ for the isotropic 

orientation distribution f = an. This value will be an overestimate of JI’ because as 
+ increases some rods are counted more than once. A numerical evaluation of the 
integral (16) for p is straightforward and gives p = 410. 

The largeness of this ‘order-one ’ coefficient deserves comment. The more 
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1 10 1 02 103 * 
FIGURE 7 .  Variation of N($)  for a three-dimensional system of randomly aligned rods. 

important reason is that in defining 4 the rod length 1 rather th:n the half-length 
$1 was used. In consequence a typical rotational freedom of only q5/8 occurs for each 
rpd. The quantity /3 scales with the sixth power of the rod length and thus redefining 
4 as (n$Z)3 would reduce /3 to  about 6.4. This additional factor arises from the 
cooperation of the cage in giving a test rod more room for manoeuvre than the 
distance to  its nearest neighbours. 

In  table 2 we show also the values of K ,  M and /3 for more strongly peaked 
orientation distributions f. It is impractical to explore the full function space of 
possibilities for f ,  but a representative sample of distributions may be obtained by 
choosing 

where rl(. is a constant (p = 0 isotropic: rl(. = co fully aligned). The scalar measure of 
the anisotropy h is given by (15). It is striking that /3 is a very weak functional of f :  
indeed for small A, 

/3 = 410(1+A2), 

and since the dependence is quadratic the distribution must be strongly peaked for 
p to be changed significantly. Thus those approximate calculations which have taken 
D' as independent off (e.g. DE) should be acceptably accurate. 

The result for /3 here can be compared with that given by other methods. Doi et al. 
(1984) quote a value of 540 from a numerical simulation. The discrepancy is probably 
accounted for by our overestimation of JV (which then underestimates p). A 
simulation of a different sort has also been performed by Frankel & McGuire (1983) 
giving a value for /3 of about 1000, but with only modest values of q5 (25-50). The 
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P 
0 
0.1 
0.3 
1 .o 
2 .o 
3 .0 
4.0 
5.0 
00 

h 

0 
0.021 
0.063 
0.220 
0.439 
0.601 
0.717 

1 
0.786 

M 

0.498 
0.498 
0.497 
0.484 
0.439 
0.382 
0.333 
0.297 
0 

K 

0.743 
0.743 
0.744 
0.754 
0.787 
0.832 
0.873 
0.900 
1 

P 
410 
410 
420 
430 
480 
570 
690 
810 

TABLE 2. Variation of diffusivity with orientation distribution for a three-dimensional 
suspension of rods 

dynamics in this simulation is however of free motion of particles with collisions 
rather than Brownian motion and no exact comparison can therefore be expected. 

A third simulFtion has been performed ,by Fixman ( 1 9 8 5 ~ )  for which a different 
dependence on 4 is claimed, namely D’ cc 4-l. The results quoted by Fixman are for 
a system of rods whose centres are constrained not to move so that a test rod can 
never escape the cage. The autocorrelation function of the rod orientation is then 
found to asymptote to a fixed value as t --f 00 (called C, by Fixman), and the mean 
angular displacement 8 of a test rod is then given as 

( e 2 )  = 2(1 -cp). 
We show in figure 8 Fixman’s data for (e2) for varying d on a log-log plot. The ‘ best’ 
slope appears to be about - 1.6, intermediate between the DE value ( -  2) and that 
of Fixman’s (1985 b )  model ( - 1) .  

It is notable, however, that bo\h Doi et al.’s (1984) simulation pnd our analysis 
suggest that only for values of 4 exceeding about 8p can the $-2 behaviour be 
expected, and keeping only the data points for large q5 in figure 8 does support an 
exponent closer to -2 than - 1 .  We can also compare at this point Fixman’s model 
(1985b) with ours. Fixman assumes that for 0 < t < t, the equilibration of the cage 
‘proceeds outward from the test rod at substantially the same rate as unhindered 
angular diffusion of the rod’. This assumption amounts in our terms to a 
comparatively modest linear (or quadratic) growth of A’” with 8 rather than the 
exponential growth suggested above. We have noted in earlier sections (4.1,4.2) $h?t 
such functional dependence gives rise to a diffusivity D‘ larger, as a function of q5, 
than implied by nearest-neighbour sepFrations, and this discrepancy in Jfr may well 
give rise to the conclusion that D‘ K q5-I. 

A number of experiments to measure D‘ have been performed (Zero & Pecora 
1982; McGuire, McTague & Rondelez 1980) and these appear to support the DE 
theory but with a value for /3 in the range 1000 to 2000. One likely source for the 
discrepancy between theory and experiment is that the theory does not include 
hydrodynamic interactions between rods. A na’ive expectation is that distant rods 
may act as a porous medium so far as the fluid is concerned and thereby (as noted 
by Batchelor 1971) generate ”a  logarithmic correction to the diffusivity D‘. In 
consequence the result B‘ cc q5-2 should be modified by inclusion of a logd term. 
A careful analysis of this question is itself a major task and lies outside the scope of 
this paper. 
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i 
FIQURE 8. A numerical simulation of rods in threeAdimensions but with fixed centres. The long-time 
orientational autocorrelation C, plotted against 4. 0, data from Fixman (1985~) ;  lines (a), ( b ) ,  (c) 
have slopes -2, - 1.6, - 1 respectively. 

5.  Diffusion in a suspension of rigid spheres 
We consider in this section the self-diffusion of a suspension af rigid Brownian 

spheres of number density n and radius a .  This problem has been cansidered for small 
concentrations by Batchelor (1983) who showed that 

- 1-2.104 + O(42). 
D _ -  
DO 

The experiments of Kops-Werkhoven et al. (1982) show reasonable agreement with 
this result for concentrations 4 5 0.15. The formula above makes allowance for 
hydrodynamic interactions between spheres. The corresponding result when 
hydrodynamic interactions are neglected is 

D 
- = 1-24+0(42) 
DO 

(see Rallison & Hinch 1986 and references therein). Rallison & Hinch also give 
formulae from which the full time-dependence of (x2) ( t )  may be calculated for small 

For non-dilute systems light-scattering experiments of Kops-Werkhoven & 
Fijnaut (1982) have determined D($) for general 4, and show that beyond a critical 
value of$, q5c say, the self-diffusivity becomes very small, possibly zero. We seek here 
to compare the theoretical prediction from (5) with the experimental results. 

4.  
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5.1. h’valuation of N ( x )  .for a systvm of spheres 

The calculation of N ( x )  follows much the same lines as that for the system of rods 
discussed in $4.2. When a test sphere advances rectilinearly through a distance x ,  an 
advancing ‘front ’ of spheres is pushed before it, and this front will be approximately 
circular for both small and large values of x.  We suppose then for simplicity that the 
front is always circular with radius W ( x ) .  Then, when the test sphere advances a 
further distance dx, a new sphere is struck if its centre lies in a volume n(9+a)*dUc 

-- - nn(9+a)* with N(0) = 1 
d N  
dx 

and so 

W also increases with x because new overlapping spheres increase the area of the 
front. We can approximate this increase by requiring that 

d(n9‘) = Probability (new sphere is hit) x (Expected area of overlap). 

Now if 9 $ a an overlapping sphere is hit if its centre lies in a volume 2 x 9  2a dx, and 
its expected area of overlap is $nu2, hence 

d 
- (7cW’) - n 2 n g  2a 4na2 = +inW 
ax 

as W’/a + cc . 

On the other hand for the first encounter when 22 = a ,  a second sphere is struck if its 
centre lies in a volume n ( 2 ~ ) ~ d x  and, as shown in Appendix B, the expected area 
overlap is ;nu2. Thus 

d 
- (nWz) - n 4na2 $nu2 = $@% 
dx 

as W / a  --f 1. 

These results may be combined to give (within the approximation of circularity for 
the front) 

dW’ldx = &5a(9/a),  W ( 0 )  = a ,  (19) 

where 

The solution of the differential equations (18) and (19) then determines N ( x ) .  

5 .2 .  Evaluation of t, for a system of spheres 

In  order to escape the influence of its nearest neighbours a test sphere must be able 
to move a distance comparable with its radius C L ,  so that the cage size d, = ya ,  where 
y is a number of order unity. The choice of y is less clear, but a value may be selected 
by means of the following observation. To side-step a second sphere directly in its 
path, the test sphere must suffer a relative sideways displacement a t  least as great 
as its diameter 2a, and thus on average both the test sphere and the obstacle are 
required to move through at  least half this distance. The simplest choice for y is 
therefore y = 1 and d ,  = a. We shall show later that for this choice of d, (and only 
for this choice) the self-diffusivity first vanishes a t  (or at least close to) the 
concentration for which the spheres are randomly close-packed - which provides 
support for the hypothesis. 

For the calculation here, therefore, d, is in principle given and t ,  is to be 
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determined. If no finite solution for t, exists then the test sphere can never escape the 
cage and so the Iong-time self-diffusivity is zero. 

5.3. Determination of the e#ectieie diflusivity 
With the choice d, = a, (5) gives for the x-component of the test-sphere displacement 

t, is the value o f t  (if such exists) for which the right-hand side of this equation first 

D a2 reaches unity, and then 

Do 2D,t,‘ 

It is convenient to solve the equations above by the following device : let r = W / a  and 
regard 2 = x(r) and N = N ( r ) .  Then from (19) and (18) 

-=- 

(1 + r ’ )2  dr’ + 1. 

To make further progress it is necessary to make some assumption about the form 
of the (monotonic) function a(r)  consistent with the asymptotes (20) : a simple and 
convenient choice is a(r)  = ( I  --$r)-l.  

It follows that $$a= r-$logr-I 

and M ( r )  = +3+9-2+$r-$logr-4, 

and hence from (21) 

X 

where r is given implicitly by 

Now as r increases, the integral in (22) is a monotonic increasing function with 
asymptotic value of 0.73 as r-f 00. Hence beyond a critical concentration $ c ,  given 

4, = El6 x 0.73/97~]1= 0.64, as 

(x2) cannot exceed a2 for any time t ,  and hence the diffusivity D must vanish. As 
noted above, this value for $, is close to the ‘random close-packing ’ value $c = 0.63 
generated by Monte Carlo simulations of rigid spheres (see the discussion in 
Batchelor & O’Brien 1977), and indeed within the approximations made here is 
indistinguishable from it. 

For concentrations $ close to $c ,  t, and hence r become very large and (22) may 
be written 

asr+cO. (xz) $: 16 3dr’ 
a2 $2 9n62 S, r’2 
----- __ 

The solution of this equation €or r gives the asymptotic estimate 
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For lower concentrations 4 it is a straightforward matter of interpolation from a 
numerical evaluation of the integral in (22) to determine the value of r ($ )  a t  which 
(xz )>/a2  = 1, and hence from (23) the corresponding t,, giving D. 

These results are plotted in figure 9 along with the data of Kops-Werkhoven & 
Fijnaut (1982) from light-scattering experiments. The agreement is good, a t  any rate 
for higher concentrations, which is perhaps surprising in view of the fact that no 
explicit account is taken in the theory of the effect of hydrodynamic interactions 
between spheres. For low and moderate concentrations the theory is poor and in 
particular does not coincide with (17). 

An alternative interpretation of the results for DID, may be made by means of 
Batchelor’s (1983) observation that the long-time sedimentation coefficient s(4) of a 
tracer sphere (at  zero PBclet number) in a suspension of neutrally buoyant spheres 
is proportional to D(q5). Thus the result shown in figure 9 for the thermodynamic 
transport coefficient DID, may alternatively be regarded as a calculation of the 
hydrodynamic property s/so (see also Rallison & Hinch 1986). Unfortunately the 
available experiments on tracer sedimentation rates (Kops-Werkhoven & Fijnaut 
1982) cover only the small-4 concentration regime, where the theory here is 
inappropriate. 

More speculatively, however, it may be legitimate to regard the change in tracer 
sedimentation coefficient with concentration as arising from the corresponding 
change in viscosity of the suspension surrounding the tracer sphere. In  particular if 
we write Po then - = -, 

so P 
s($) = [6np(4) a]-l, 

In fact, for general concentrations 4 this identification of sedimentation and shear 
properties is not exact. The viscosity of the suspension is not defined on a lengthscale 
of a single particle and so the Stokes drag formula is not appropriate. In particular 
for small 9 the well-known Einstein result gives for the viscosity 

&= 1 - 2 . 5 # ~ + 0 ( $ ~ ) ,  
P 

which does not agree with (17). 
Nevertheless, for high concentrations it may be argued.(see e.g. Russel & Gast 

1986; Batchelor 1983) that the same physical mechanism that reduces D to zero (the 
inability of a sphere to escape from its cage) must also produce a dramatic increase 
in the zero-shear-rate fluid viscosity. We therefore plot in figure 9 measured values 
of p0/p from de Kruif et al. (1985). The extrapolated value of #c from their 
experiments is 0.63f0.02 in agreement with our result here. 

Additionally the nature of the viscosity singularity as 4 --f #c appears to be well- 
approximated by (24) as 

f.4 cc (1 - $ ) 2  

and is certainly at least as good (for q5 + $,) as the ad hoc formula often used, 

in which the exponent is about - 1.6. 
It should be pointed out that the physical origin of the very high viscosities 

predicted here is not a supposed high rate of energy dissipation in the small gaps 
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FIGURE 9. Diffusivity in a suspension of spheres. -, theory; rJ$c, calculated concentration for 
which D = O ;  -.-.- , asymptotic theory for q5+rJ$c, equation (24); ----, theory for small 
concentrations, equation (17) ; 0, experiments of Kops-Werkhoven & Fijnaut (1982) ; x ,  
experimental values of the zero-shear-rate viscosity po/p from de Kruif et al. (1985). 

between particles (indeed no explicit account has been taken in the theory of the 
lubrication regions between spheres). The proposal is rather than when any given 
particle moves, it causes a large clump of adjacent Brownian spheres to move (on 
average), and the energy dissipation consequently takes place over a much larger 
region of the fluid. 

In spite of the apparent agreement between theory and experiment in results for 
diffusivity and viscosity, there is no doubt that the physical picture here is an over- 
simplification. First, there is evidence from computer simulations (see Hansen & 
MacDonald 1976) and experiment (Pusey & Van Megen 1986) that the equilibrium 
state for a hard-sphere suspension is in fact crystalline if q5 > 0.55, and that even in 
the ‘metastable liquid’ phase with q5 > 0.55 (in which crystallization is prevented) 
computer experiments (Woodcock 1981) suggest that D+O a t  q5c = 0.59+0.01. This 
decrease in D has also been seen recently in experiment (P. N. Pusey, private 
communication). A more careful calculation is needed to resolve this discrepancy in 
the predicted value of q5c, 

Secondly, there can be no doubt that these results would be modified by the 
inclusion of hydrodynamic interactions between particles. An indication of the 
importance of hydrodynamics is provided by measurements of the short-time 
diffusivity in a hard-sphere suspension, for this variation in diffusivity with 
concentration can be explained only by hydrodynamic effects. The experiments of 
Van Megen et al. (1987) and de Kruif et al. (1987) show a reduction by a factor of 4 
in the short-time diffusivity when $ = 0.5, though this is still a small effect in 
comparison with the hundredfold reduction in the long-time diffusivity. It appears 
then that a t  kigh concentrations the most important consequence of the lubrication 
forces between particles is that particle overlap is prevented - and this is correctly 
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modelled by our use of potential repulsive forces. But more detailed analysis is 
needed to incorporate hydrodynamic effects for tangential particle motions. 

6. Conclusions 
The central aim of this paper has been to  exploit and quantify the idea of a ' cage ' 

of neighbours in a concentrated suspension of Brownian particles. To that end we 
have proposed two approximate but physically appropriate results to  calculate ( a )  
the dynamics of a particle during the time that it is confined by a cage, and ( 6 )  the 
time a t  which it escapes the cage. 

For very simple systems the first of these results (equation ( 5 ) )  has been verified 
analytically (Pfj3.1, 3.2). For more complex systems, agreement with numerical 
simulations ($53.4, 4.2) proves to be remarkably good where many particles are 
simultaneously involved. No general proof of the result is available at present 
however. 

The second result ( b )  has been shown to be acceptably accurate, a t  any rate for a 
system of rods, by comparison with a numerical simulation ($4.2). In the simulation 
the reptation time could be varied arbitrarily, and where the time was sufficiently 
long for many rods to become involved in the cage dynamics good agreement was 
found. 

By combining the two results, two systems of experimental interest were 
investigated. I n  a semidilute suspension of rods ($4.4) the calculation of the escape 
time is straightforward by the reptation mechanism, and the theory provides a 
method for calculating the cooperative diffusion of test rod and its surrounding cage. 
Fair agreement with experiment is obtained. 

In  $5 the same ideas were applied to  a concentrated suspension of spheres where 
the calculation of the escape time is difficult, but the size of the cage is clear a t  the 
outset. Again good agreement with experiment is found a t  concentrations sufficiently 
high for many spheres to be involved in the cooperative motion of the cage. 

There are a t  least three open-ended questions raised by this work. First the 
comparison of the results with experiment suggests that  the fundamental equation 
( 5 )  is valid in some asymptotic sense whenever a large number of particles are 
simultaneously interacting, but represents only an approximation when JV is more 
modest. A theoretical proof of this conjecture would be valuable. 

Secondly, we have treated here only systems of identical particles. It is plausible 
that analogous results will be available when two or more species are present. 

Thirdly, we have considered only very simple rigid model particle shapes. The 
most important practical case of interest is that of polymer solutions where 
application of Doi-Edwards ideas have suggested viscosities that depend very 
strongly on molecular weight and concentration. Careful analysis of the diffusion of 
a flexible polymer molecule within its cage may suggest modifications of their results 
to bring them (even) more closely in line with experiment. 

I am grateful to Professor S. F. Edwards and Drs E. J. Hinch, M. T. Barlow and 
P. N. Pusey for illuminating discussions about the work involved in this paper. 
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Appendix A. Statistical geometry for a three-dimensional suspension of 
rods 

We evaluate here the statistical qualities of interest in $4.4. A test rod rotates 
through an angle d%. The consequent mean area swept out by each rod of generation 
r is PA, do. The mean number of rods of generation ( r  + 1) striking unit area swept 
out by generation r is M,. We seek to calculate A, and M,. 

Suppose then that p, is a unit vector along a typical rod R, of generation r ,  and 
that i t  sweeps out an area with normal n so thatp;n = 0. The probability density for 
the normal n,P(n) ,  is given as 

~ ( n )  = j i p r )  &(n.pr) dzpr. (A 1 )  

in which f @ )  is the given orientation distribution for the rods and 6 is a Dirac delta 
function. 

Estimate of M ,  
Now a rod with orientation p,+, with centre a t  distance $ A h  from unit area hits that 
area if n.p,+, > lAl. Hence the expected number of rods intersecting unit area with 
normal n is 

nJol Probability (!A1 < n.p,+,) dA 

and hence averaging over all acceptable possibilities for n: 

In  the particular case where f is isotropic, the integrals are easily performed to  give 
M ,  = 8. If all the rods are aligned, however P ,+~  A p r  = 0 and M ,  = 0. Thus M ,  
depends strongly on f (see also table 2). 

Estimate of A ,  

Suppose a first-generation rod R, is struck a t  distance A, 1 from its centre, by a point 
distant A, 1 from the fixed centre of R,. NOW if R, rotates, its tip is more likely to be 
hit by R, than its unmoved centre. I n  fact the probability density for A, is 
proportional to IA,l. In  consequence the mean value of A, is g. All points of R, are 
equally likely to be struck, so the density of A, is uniform. 

Let n be a normal to the plane of motion of R,. The angle x between R, and the 
direction of motion of R, is 

sin2 = lP1 A (Po A n)l. 

When R, rotates by do, its contact point with R, moves a mean distance dodo 
where do = $!, and hence the corresponding point of R, moves a mean distance 
d, = fl(sinX)dO. Now R, will both rotate and translate as a result of the contact. 
A perpendicular force P applied to R, a t  A, I will generate a velocity and angular 
velocity proportional to AD, 12F and A, ID, F respectively, so that when the point A, 1 
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advances by d, a typical point ,uZ of R, advances by d,(l  + 12A1p)/(1 + 12Af) .  Hence 
on integration over p, the total area A swept out by R, is given by 

0 < A, < & (all points of R, move ‘forwards’) 

Q < A, < a (some points of R, move ‘backwards ’). 1 + 12A; 

On averaging over A,, 

Finally, on using the distribution (A 1 )  for n 

( A )  = 0.67d, 1 = 0.22Z2(sinx) do. 

(A 3) 
2 

(sinx> = ; JJf(PO)f(Pl)E(lPO APlOd2P0d2Pl = K ,  

say, where E is a complete elliptic integral. For an isotropic distribution f, K = n/4, 
whereas for full alignment K = 1.  Thus A ,  = 0.22K, where K is a constant only 
weakly dependent on f (see table 2). 

Estimate of A,, r > 1 

It is clear from the complexity of the calculation above that careful determination 
of A,. ( r  > 1) is exceedingly difficult. Since however higher generations contribute 
relatively little to the integral in (16) we can approximate (with fair accuracy) as 
follows. 

Suppose for simplicity that rod rotations can now be neglected. Then all points of 
R, are equally likely to strike R,, and d, (defined analogously to d, above) is given 
as 

d, = 0.67(sin x) d,, 

with a similar result for d,.. It follows that 

so that 

A,,, = (0.67K) A ,  ( T  2 l),  

A,  = (0.67K),.-l x 0.22K. 

Estimate of the reptation time 

Noting above that if a test rod is struck a t  A,Z the probability density for A, is 
proportional to lAol, then since the distance by which the rod must reptate in order 
to escape the contact is (1 - lAol) I the expected time taken to escape is 

1 
ZZ(~-A0)28A0dAo = -. 

8 0 ;  

On the other hand, the expected time at  which R, releases the constraint is 

The expected time at which the earlier of these independent events occurs is 

1 
approximately 

t ,  = - 
120;’ 
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FIGURE 10. Area of overlap for two identical spheres. 

Appendix B. Area overlap for a pair of colliding spheres 
Suppose that a test sphere moves (perpendicular to the plane of the paper) and 

strikes a second identical sphere. The circular projections of the shapes are shown in 
figure 10. We seek to calculate the expected area A of overlap (shaded in figure 

Suppose the centre of the struck sphere lies at  radial distance R from that of the 
test sphere (as shown). Then the probability density for R is R/2a2 (since the area 
of each annulus is proportional to R). The overlap area A is easily calculated as 

10). 

A = az((n - 28 + sin 28) where 8 = c0s-l R/2a, 

( A )  = a2 r2 sin 28(n - 28 + sin 28) d8 = ina2. and hence 
0 
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